Simulazioni cosmologiche

Fino a pochi anni fa gli studi di formazione delle galassie erano complicati da molte le incertezze, dipendenti sia dalla sottostante cosmologia che dalla traduzione dei processi fisici più rilevanti. Ora siamo nell’era della cosiddetta "cosmologia di precisione", ossia il modello di fondo è ormai piuttosto ben definito grazie alla ricchezza di osservazioni disponibili, in particolare quelle delle fluttuazioni del fondo cosmico a microonde. Possiamo quindi calcolare, con ragionevole fondatezza, l'evoluzione della componente dinamicamente dominante, la materia oscura (DM), sotto la guida della sola forza di gravità. Partendo da una gamma ragionevole di fluttuazioni di densità primordiali, le regioni più dense evolvono collassando in filamenti, segnando la fine del regime lineare. Poi la materia fluisce lungo i filamenti in aloni di materia oscura. Tali aloni si fondono per formare aloni sempre più grandi (clustering gerarchico). I risultati generali di queste simulazioni, che considerano solo gli effetti della gravità, confermano e approfondiscono i risultati ottenuti con analisi analitiche, fornendoci una descrizione generale di come si formano le strutture cosmiche: le galassie e gli ammassi di galassie.

Una comprensione completa dei processi che portano alla formazione delle strutture cosmiche, in particolare alle galassie, è un compito molto più impegnativo poiché richiede di trattare la fisica che coinvolge la materia luminosa (barionica). La formazione delle galassie, che si verifica in aloni di DM, ha luogo tramite una complessa rete di processi contemporanei alla fusione degli aloni di materia oscura: il raffreddamento del gas, il suo successivo collasso e la formazione stellare nello stesso, l’ immissione di energia nel gas da parte di esplosioni di SNae e di venti stellari (feedback), l’arricchimento chimico di gas e stelle, l'evoluzione in luminosità delle popolazioni stellari formate, l'assorbimento della luce stellare da parte della polvere e la riemissione nell’ IR e sub-mm, la formazione di buchi neri, la conseguente l'attività come AGN ed il suo effetto sul mezzo interstellare, e, per finire, la fusione di galassie.

Per seguire tutti questi processi in un contesto completamente cosmologico si dovrebbe tener conto di una gamma di scale dinamiche da molto meno di 1pc a ben piu’ 10Mpc. Inoltre, molti dei processi di cui sopra sono ancora poco conosciuti. Così, simulazioni cosmologiche complete non sono ancora attuabili. Ci sono invece due approcci complementari: (i) simulazioni dettagliate, che includono il gas, cioè gli effetti idro-dinamici (SPH), con prescrizioni fenomenologiche dei processi che avvengono su scala minore, come la formazione stellare , il feedback relativo e la crescita dei BHs, (ii) modelli semi-analitici (SAM), che usano l'approccio analitico per descrivere ogni processo coinvolga i barioni.

All’ OAPd siamo coinvolti in entrambi questi progetti. In particolare, per la prima volta sono state sviluppate simulazioni cosmologiche che studiano la crescita della barra in un disco stellare e la sua evoluzione in tale contesto, ed è stato presentato il primo modello SAM che include il feedback sia da parte delle stelle che dall’ attività dell’AGN formato.
Entrambi questi approcci ci aiutano a mettere in luce ed a risolvere, alcuni punti cruciali dell'evoluzione delle galassie.

*****

Until a few years ago, studies of galaxy formation have been affected by uncertainties both in the underlying cosmology as well as in the most relevant physical processes. Now we are in the so called "precision cosmology" era, which means that the background model is relatively well defined by a wealth of observations, in particular those of fluctuations in the cosmic micro-wave background. So, we can compute with reasonable confidence the evolution of the dynamically dominant dark matter (DM) component, ruled by gravity. Starting from a reasonable spectrum of primordial density fluctuations, over-density regions above the linear regime collapse into sheets and filaments. Then, matter mainly flows along filaments into dark matter halos. These halos merge to form bigger and bigger halos (hierarchical clustering).The general outcomes of these gravity-only simulations confirm and deepen those obtained by means of analytical analysis, yielding a broad outline of the formation of cosmic structures: galaxies and clusters.

Indeed, a full understanding of the processes leading to the formation of cosmic structures, galaxies in particular, would require the much more demanding task of treating the complex physic of luminous (baryonic) matter. Galaxy formation, which occurs in DM halos, involves a complex web of processes: merging of dark matter halos, cooling of gas, collapse and star formation from cold gas, energy input into gas from SNae explosions and winds (energetic feedback), chemical enrichment of gas and stars (chemical feedback), galaxy mergers, luminosity evolution of stellar populations, absorption of starlight by dust and re-emission in IR+sub-mm, formation of super massive black holes, the ensuing AGN activity and its feedback on the interstellar medium.

To follow from first principles all these processes in a fully cosmological context, it would span a dynamical range from << 1pc to >10 Mpc. Moreover, many of processes above are still poorly understood. Thus, simulations genuinely from first principles are at present impossible. Two complementary approaches are usually followed: (i) numerical simulations including gas, i.e. smooth particle hydro-dynamical (SPH) simulations, accounting for phenomenological prescriptions of sub-grid physics (e.g. star formation, feedback, SMBH growth), (ii) semi-analytical models (SAMs), using the prescription approach for every process involving baryons.

At the OAPd we are deeply involved in both these projects. In particular, SPH simulations focusing on the bar growth and its evolution, for the first time in a fully cosmological frame , and the first SAM model accounting for the feedback from star formation and AGN activity, have been recently performed.

Results from both these approaches help us to shed light on, and may be to solve, several crucial points concerning galaxy evolution.